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A Two-Stage Variable-Stringency Semiparametric Method for Mapping
Quantitative-Trait Loci with the Use of Genomewide-Scan Data on
Sib Pairs
Saurabh Ghosh and Partha P. Majumder
Anthropology and Human Genetics Unit, Indian Statistical Institute, Calcutta

Genomewide scans for mapping loci have proved to be extremely powerful and popular. We present a semiparametric
method of mapping a quantitative-trait locus (QTL) or QTLs with the use of sib-pair data generated from a two-
stage genomic scan. In a two-stage genomic scan, either the entire genome or a large portion of the genome is
saturated with low-density markers at the first stage. At the second stage, the intervals that are identified as probable
locations of the trait loci, by means of analysis of data from the first stage, are then saturated with higher-density
markers. These data are then analyzed for fine mapping of the loci. Our statistical strategy for analysis of data
from the first stage is a low-stringency method based on the rank correlation of squared trait-difference values of
the sib pairs and the estimated identity-by-descent scores at the marker loci. We suggest the use of a low-stringency
method at the first stage, to save on computational time and to avoid missing any marker interval that may contain
the trait loci. For analysis of data from the second stage, we have developed a high-stringency nonparametric-
regression approach, using the kernel-smoothing technique. Through extensive simulations, we show that this
approach is more powerful than is a currently used method for mapping QTLs by use of sib pairs, particularly in
the presence of dominance and epistatic effects at the trait loci.

Introduction

Genomewide scans are a powerful approach for map-
ping genes (Collins 1995; Lander and Kruglyak 1995),
and they have already been proved successful (Elbein et
al. 1999; Krushkal et al. 1999; Niu et al. 1999; Wyst et
al. 1999). With the use of this approach, in addition to
the collection of data on the trait/disease of interest,
genotype data are generated on a large number of mark-
ers that are spread—preferably evenly—across the entire
genome. Since the collection of pedigree data is difficult,
a popular approach is to collect data on sib pairs and
to analyze the data with the use of appropriate statistical
techniques (Haseman and Elston 1972; Blackwelder and
Elston 1985; Amos et al. 1989; Amos and Elston 1989;
Lander and Botstein 1989; Goldgar 1990; Haley and
Knott 1992; Jansen 1993; Olson and Wijsman 1993;
Fulker and Cardon 1994; Olson 1995a, 1995b; Page et
al. 1998; Alcais et al. 1999; Allison et al. 1999). Al-
though, for qualitative traits in humans, various statis-
tical methods—both parametric and nonparametric—
have been proposed for linkage analysis and although
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their relative efficiencies have been extensively tested,
such methods are still being developed (Olson 1995b;
Almasy et al. 1998; Page et al. 1998; Alcais et al. 1999;
Allison et al. 1999) and compared (Williams et al. 1999)
for human quantitative traits. Parametric methods for
mapping a QTL or QTLs involve parametric models,
and, thus, they are susceptible to minor deviations in
distributional assumptions. The nonparametric methods
that are currently used (Haseman and Elston 1972;
Kruglyak and Lander 1995a, 1995b) are relatively more
robust, but they require specification of the trait model,
and inferences based on the proposed statistics rely on
asymptotic distributions. In this paper, we propose the
use of a two-stage method for locating the most-likely
position of a QTL on a chromosome, given trait values
and marker-genotype trait values for a set of sib pairs.
We first considered that the trait was being determined
by a single QTL with environmental effects, and we then
extended the proposed procedure to consider the pos-
sibility that the trait was being determined by multiple
QTLs. When genomewide scans that involve a large
number of markers are performed, a preferred strategy
is to use a set of low-density markers (e.g., those at 5–10-
cM intervals) to identify the region(s) in which the
QTL(s) may be located and then to saturate these iden-
tified regions with high-density markers (e.g., those at
1–5-cM intervals) to fine map the QTL. This two-stage
approach is cost-effective, both computationally and in
terms of genotyping. Our proposed two-stage protocol
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is meant for analysis of sib-pair data generated in this
manner. We have used variable stringencies in the two
stages of our procedure. A low stringency is used in the
first stage, to reduce the possibility of missing any
marker interval that may contain the trait loci. At the
second stage of fine mapping, we have used a higher
stringency to reduce the probability of a false positive
error. However, we note that the second stage of our
procedure can also be directly used for analysis of sib-
pair data, although the computational cost will be
higher. In any case, from a study-design point of view,
use of a two-stage strategy of data generation and anal-
ysis is logically more preferable than is use of a one-
stage strategy. In the first stage, we identify the subset
of markers that is linked to the QTL, by use of a test
statistic based on rank correlation of estimated marker
identity-by-descent (i.b.d.) scores and squared difference
of sib-pair trait values. In the second stage, we perform
nonparametric regression of the squared sib-pair trait
difference on estimated i.b.d. scores for the different pos-
sible pairs of flanking markers, by use of kernel smooth-
ing (Silverman 1986). We have denoted our procedure
as being “semiparametric,” even though we have used
nonparametric data-analytic procedures at both stages,
because of certain underlying model parameters and as-
sumptions (e.g., allele frequency and Hardy-Weinberg
equilibrium). We have compared our semiparametric
procedure with the parametric-regression procedure pro-
posed by Olson (1995b) and have shown, by use of
Monte-Carlo simulation, that, while the parametric
method is marginally more efficient than is our semi-
parametric method, when there is no dominance effect
at the trait locus (loci), the proposed method is much
more efficient in the presence of dominance and/or
epistasis.

Model

We assume that a quantitative trait Y is controlled by
an autosomal biallelic locus with alleles A and a. The
expectations of Y, conditional on the three genotypes
AA, Aa, and aa, are assumed to be a, b, and �a, re-
spectively. The variance of Y within each genotype is
assumed to be equal, j2. No assumption is made re-
garding the shape of the probability distribution of the
trait values. The underlying population is assumed to be
in Hardy-Weinberg equilibrium with respect to the trait
locus. We assume that the trait locus is in linkage equi-
librium with a pair of autosomal, biallelic, codominant
flanking marker loci.

Suppose that are the ob-[(y , y ) : j = 1, 2, ) , n]j1 j2

served values of the quantitative trait of n independent
sib pairs. We assume that the expectation of the cor-
relation coefficient between the trait values of any sib
pair is equal, r. Let denote the propor-p , p , ) , pj1 j2 jk

tions of alleles shared i.b.d. at k ordered marker loci
found on the same chromosome, for the jth sib pair. Let

denote the probability that the jth sib pair has i alleles(l)fji

shared i.b.d. at the lth marker locus, where ;i = 0, 1, 2
. Then, the estimator of pjl is given byl = 1, 2, ) , k
; . Haseman and Elston1(l) (l)p̂ = f � f l = 1, 2, ) , kjl j2 j12

(1972) have explicitly calculated for different mating(l)fji

types, and, in the case of missing parental information,
they have suggested an algorithm considering phenosets
(Cotterman 1969).

Given data on the quantitative trait of the sib pairs
and the estimated i.b.d. scores at the k ordered marker
loci, our aim is to determine the most-likely interval in
which the trait locus is found. We define y = (y �j j1

, —that is, denotes the squared pair2y ) j = 1, 2, ) , n yj2 j

difference in the trait values for the jth sib pair.

Coarse Mapping Based on Rank Correlation

The first step is to analyze data generated from a ge-
nomewide scan by use of coarsely spaced (at 5–10-cM
intervals) markers and to test whether the trait locus
shows any linkage to any of the k ordered marker loci
considered. When a trait locus and a marker locus are
linked, it is expected that siblings with similar trait val-
ues will exhibit considerable sharing of alleles at the
marker locus. If the trait and the marker loci are un-
linked, then, in spite of a significant sharing of alleles
i.b.d. between a pair of siblings, their trait values may
be largely dissimilar. Thus, a natural test for linkage
between the trait locus and the lth marker locus (l =

is a test for the strength of correlation be-1, 2, ) , k)
tween ’s and ’s. A nonparametric technique of testingˆy pj jl

for no correlation between ’s and ’s is based onˆy pj jl

Spearman rank correlation (see Randles and Wolfe
1979). Since can assume only five distinct values (i.e.,p̂jl

and 1), it is expected that there will be many1 1 30, , , ,4 2 4

ties in values. Thus, we need to use the Spearmanp̂jl

rank-correlation formula for the case of ties, which is
as follows:

2 n 2[(n � 1)/12] � [(T � T )/2] � (1/2n) � du j=1 jv
R = ,n 2 2��[(n � 1)/12] � T [(n � 1)/12] � Tu v

where

ˆd = rank(y ) � rank(p ) ,j j jl

p

3T = (u � u )/12n ,�u i i
i=1

p
3T = (v � v )/12n ,�v i i

i=1
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with there being p ties in ’s of lengthsy u , u , ) , uj 1 2 p

and q ties in ’s of lengths .p̂ v , v , ) , vjl 1 2 q

The test statistic is , which is asymptotically�n � 1Rn

distributed as under the null hypothesis of noN(0, 1)
correlation. Thus, for a level a test, the critical region
is given by , where is the th�n � 1FR F 1 z z (1 � m)n a/2 m

quantile of a standard normal variate. If the null hy-
pothesis of no correlation is accepted for all the k
marker loci (with the level of significance adjusted to
a/k, to account for the multiple tests), then our conclu-
sion is that the trait locus is most probably not located
on the same chromosome as are the k marker loci.

Using the above test procedure, we selected those
marker loci for which the null hypothesis of no corre-
lation between ’s and ’s is rejected—that is, thoseˆy pj jl

marker loci that show evidence of linkage with the trait
locus. In the next section, we will consider two such
consecutive marker loci as candidate markers flanking
the trait locus.

Fine Mapping Based on Nonparametric Regression

Since, at the first-stage of the genomewide scan, the
marker spacing was coarse, the distance between the two
markers found to provide the highest evidence of linkage
(the highest value of the rank correlation) with the QTL
is 5–10 cM. At the second stage, this genomic region/
interval is covered with densely spaced markers, and the
data thus generated are analyzed for the purpose of fine
mapping of the QTL. Let us assume that this region/
interval is covered with M densely spaced markers. Con-
sider, without loss of generality, the ordered consecutive
densely spaced markers 1 and 2. We propose a non-
parametric additive regression model given by

ˆ ˆy = w (p ) � w (p ) � e ; j = 1, 2, ) , n ,j 1 j1 2 j2 j

where w1 and w2 are real-valued functions of andp̂1

, respectively, and where ’s are random errors. Thep̂ e2 j

regression model is motivated by the fact that the esti-
mated i.b.d. scores of siblings at both marker loci 1 and
2 were found to be individually significantly correlated
with the squared difference of the trait values (y). How-
ever, the nature of dependence, on , of the estimatedyj

i.b.d. scores and is a function of the recombinationˆ ˆp pj1 j2

distances between the marker and trait loci and other
biological parameters, such as interference and domi-
nance at the trait locus. Hence, we do not assume any
specific form of the functions w1 and w2, but we do as-
sume only general functional forms to model the nature
of dependence between and . The func-ˆ ˆ(p , y ) (p , y )j1 j j2 j

tional forms are estimated from the data. Estimates of
w1 and w2 are obtained in steps and iteratively, with use
of kernel-smoothing techniques (see Silverman 1986). In

this technique of nonparametric regression, the domains
of the explanatory variables are divided into a number
of windows. Local smoothing is done within each win-
dow, and appropriate adjustments are made to ensure
continuity at window boundaries. In step 1, we perform
a nonparametric-regression analysis of y on (detailsp̂1

will be given later) and obtain , an estimate of w1. Inŵ1

step 2, we replace y by . In step 3, we∗ ˆ ˆy = y � w (p )1 1

regress y* on to obtain , which is an estimate ofˆp̂ w2 2

w2. In step 4, we compute the residual sum of squares
given by . We then restart then 2ˆ ˆˆ ˆ� {y � w (p ) � w (p )}j=1 j 1 j1 2 j2

process at step 1 and perform a regression analysis of
on . We continue to iterate until∗∗ ˆ ˆˆ ˆy = y � w (p ) p w2 2 1 1

and stabilize reasonably—that is, the residual sum ofŵ2

squares differs negligibly (!e, a small predetermined pos-
itive real number) in two successive iterations. The strin-
gency parameter, e, is obviously variable. Let the final
residual sum of squares obtained be denoted by

and, in general, by , when the lthCV(1, 2) CV(l, l � 1)
and th marker loci are considered. The most-likely(l � 1)
position of the trait locus is given by the interval flanked
by the ith and th marker loci, where i corresponds(i � 1)
to

CV(i, i � 1) = min CV(l, l � 1) .l

To regress y on , the range of is divided into win-ˆ ˆp p1 1

dows of length h. The kernel function that is used is

3 2 F F(1 � t ) if t ! 1;
4k(t) = {
0 otherwise.

The kernel estimator of is given as follows:w1

ˆ( )[ ]k x � p /h yj1 j

ŵ (x) = .1 ˆ( )[ ]k x � p /hj1

Since nonparametric regression tends to overfit data
(Silverman 1986), we use the “leave-one-out tech-
nique”—that is, we leave out the observation inˆ(y , p )j j1

order to predict . The predictor of is given as follows:y yj j

ˆ ˆ( )[ ]k p � p /h yj1 i1 iˆˆ ˆy = w (p ) = .j 1 j1 ˆ ˆ( )[ ]k p � p /hj1 i1

For the given window length h, the total error in
prediction is given by . The process isn 2ˆR = � (y � y )h j=1 j j

repeated for different window lengths. The optimal win-
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Figure 1 Mean rank correlation, based on 1,000 replications, between squared difference of trait values of a sib pair and estimated i.b.d.
scores at 100 ordered markers, with the use of simulation parameter values , , , , and (a) , (b) , and (c) ,2a = 5 j = 1 p = .7 r = .6 b = 0 b = 2 b = 4
on the basis of data from 100 sib pairs.

dow length h* is given by that h for which is min-Rh

imum.

A Currently Used Linear-Regression Strategy

Suppose that A and a denote the alleles at the trait locus.
Given the genotypes at the trait locus, let the conditional
expectation, , of the quantitative character Y be a,E(Y)
0, and �a for AA, Aa, and aa, respectively. If andp̂1

denote the estimated i.b.d. scores at the two markerp̂2

loci flanking the trait locus, Olson (1995b) showed that

ˆ ˆ ˆ ˆE(yFp , p ) = b � b p � b p (1)j j1 j2 0 1 j1 2 j2

for some constants b0, b1, and b2.
Thus, a strategy for determination of the location

of the trait locus is based on linear regression of ’syj

on the i.b.d. scores of possible pairs of flanking mark-
ers. If the lth and th marker loci are considered,(l � 1)
then is predicted by , whereˆ ˆ ˆˆ ˆ ˆy y = b � b p � b pj j 0 1 jl 2 j(l�1)

, , and are the least-squares estimators of b0,ˆ ˆ ˆb b b0 1 2

b1, and b2 respectively. Tests for linkage are equiva-
lent to tests of b1 and b2, which involve parametric-
test statistics. The error sum of squares is given by

. The most-likely interval ofn 2ˆE(l, l � 1) = � (y � y )j=1 j j

the trait-locus location is given by that flanked by the
ith and markers, if and only if(i � 1)

E(i, i � 1) = min E(l, l � 1) .l

Using Monte-Carlo simulations, we have examined
the relative efficiencies of the proposed nonparametric
procedure and the parametric method developed by Ol-
son (1995b). In regression analysis, to avoid regres-
sional overfits to data, it is statistically desirable to use
the leave-one-out technique for prediction of , whichyj

is what we have prescribed and have used for the pro-
posed semiparametric-regression procedure. However,
in Olson’s (1995b) parametric-regression procedure,
this was not prescribed, and perhaps it is not used in
practice. For purposes of comparing the proposed
method with that of Olson (1995b), we have used the
leave-one-out technique for both methods. We have also
computed and compared the error sum of squares with-
out use of the leave-one-out technique for Olson’s
(1995b) method, although such comparisons are not
strictly valid, because it is expected a priori that the
error sum of squares obtained without use of the leave-
one-out technique will be smaller than that which will
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Figure 2 Mean rank correlation, based on 1,000 replications, between squared difference of trait values of a sib pair and estimated i.b.d.
scores at 100 ordered markers, with the use of simulation parameter values , , , , and (a) , (b) , and (c) ,2a = 3 j = 1 p = .7 r = .6 b = 0 b = 1 b = 2
on the basis of data from 100 sib pairs.

be obtained with use of the leave-one-out technique, in
view of overfitting.

We note that equation (1) is valid only when there is
no dominance at the trait locus. When there is domi-
nance, the conditional expectation on the left-hand side
of equation (1) is not a linear function of and .ˆ ˆp pj1 j2

Hence, use of the linear regression given in equation (1)
may yield incorrect inferences.

Simulation

To assess the performance of our proposed nonpara-
metric-regression strategy and to compare it with the
parametric-regression strategy described in the A Cur-
rently Used Linear-Regression Strategy section, we have
generated data on trait values of sib pairs and have es-
timated marker i.b.d. scores for different sets of param-
eter values. The different steps of the simulation algo-
rithm are described below. In the first step, we generated
the trait i.b.d. scores of sib pairs by use of a trinomial
random-number generator with cell probabilities of ,1

4

, and , respectively. In the second step, we generated1 1
2 4

the trait genotypes of the sib pairs from a multinomial
distribution, with cell probabilities given by the condi-
tional probabilities of the generated trait i.b.d scores,
given the trait-genotypic pair (given in table 1 of the
study by Haseman and Elston [1972]). In the third step,

we generated the trait values of the sib pairs from a
bivariate normal distribution with appropriate mean
vector and covariance matrix, depending on the trait
genotypes of the sib pair, as described in the Model sec-
tion above. In the fourth step, we obtained the squared
difference of the trait values of each sib pair. In the fifth
step, we generated the i.b.d. scores of the sib pairs for
each of the two markers flanking the trait locus, con-
ditional on the generated trait i.b.d. scores from a tri-
nomial distribution (given in table 4 of the study by
Haseman and Elston [1972]). In the sixth step, we se-
quentially generated the i.b.d. scores of the sib pairs for
each nonflanking marker, conditional on the generated
i.b.d. score of the marker flanking it, from the same
trinomial distribution used in the previous step. In the
seventh step, we generated the estimated i.b.d. scores of
the sib pairs for each of the markers, conditional on the
generated marker i.b.d. scores from a 5-nomial distri-
bution (given in table 5 of the study by Haseman and
Elston [1972]).

Having generated the required data on n independent
sib pairs, we used the proposed test of linkage based
on rank correlation to select the possible pairs of flank-
ing markers. We then performed both the nonpara-
metric and parametric regressions to determine the
most-likely position of the trait locus. For the non-
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Figure 3 Both the mean rank correlation (unbroken line), based on 1,000 replications, between squared difference of trait values of a
sib pair and estimated i.b.d. scores at markers around the true QTL location, and the empirical 95% confidence band (dotted lines) for simulation
parameter values , , , , and .2a = 5 b = 0 j = 1 p = .7 r = .6

parametric regression, the stringency parameter e was
kept fixed at .001.

Results

In this section, we denote the trait parameters as follows:

1. Effect of the genotype AA on trait values = a.
2. Dominance effect of the trait locus = b.
3. Frequency of allele A=p.
4. Variance of the trait values within any trait geno-

type = j2.
5. Correlation coefficient between the trait values of

any sib pair = r

Identification of the Probable Interval Locations of the
QTL

To assess the performance of the rank-correlation sta-
tistic in the identification of the interval location of the
QTL, we have generated data on 100 ordered, equally
spaced markers, such that the recombination fraction
between any two consecutive markers is .05. Simulated
data were generated under the assumptions that the trait
locus is flanked by the 24th and 25th markers and that
the recombination fraction between the trait locus and
the 24th marker is .02. The trait parameter values used
in the simulation were ; , 2, or 4; ;a = 5 b = 0 p = .7

; and (or higher). The nature of the absolute2j = 1 r = .6
rank correlation between the different markers and the
squared difference in trait values of the sib pairs is pre-
sented in figure 1a–c, for , 2, and 4, respectively.b = 0
From the figures, we find that the absolute rank corre-
lation increases with the proximity of the considered
marker to the trait locus. The peak was at the 24th
marker, correctly indicating the approximate location of
the trait locus. Though with increase in b (i.e., the dom-
inance effect) the peak becomes less pronounced, the
approximate position of the trait locus is fairly clear,
even for a high-dominance effect.

To investigate the effect of changing a, we present, in
figure 2a–c, graphs that are similar to those in figure
1a–c but that have and , 1, and 2, respectively.a = 3 b = 0
As is evident from these figures, although the mean val-
ues of the rank correlation became slightly smaller, the
nature of the graphs and, hence, the qualitative infer-
ences remained unchanged.

The variation in the values of the rank correlation
across the 1,000 simulation replications was extremely
small for every set of parameter values. We present, in
figure 3, the empirical 95% confidence band for a section
of the graph presented in figure 1a. (The empirical con-
fidence bands were so narrow that these are not clearly
presentable in figure 1a–c.) This indicates another de-
sirable statistical property of the proposed method.

Finer Localization of the QTL

Once the interval in which the QTL may be located
has been identified, then, in practice, one saturates this
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Table 1

Comparison of Nonparametric and Parametric
Regressions, Based on Average Prediction Error
(Residual Sums of Squares Averaged Over 1,000
Replications), for a Single QTL, with 100 Sib Pairs

CANDIDATE INTERVAL ERROR IN PREDICTIONa

NP
(97.2%)

P1
(98.5%)

P2
(98.9%)

b = 0, p = .5, r = .8:
(1,2) 100.56 95.46 92.71
(2,3) 87.65 74.72 70.62
(3,4) 104.29 99.55 97.68
(4,5) 117.03 110.84 107.27

NP
(90.7%)

P1
(82.5%)

P2
(84.1%)

b = 2, p = .9, r = .7:
(1,2) 152.76 157.63 155.35
(2,3) 143.37 148.54 146.72
(3,4) 152.90 160.81 157.64
(4,5) 166.29 173.06 171.18

NP
(75.8%)

P1
(43.0%)

P2
(51.5%)

b = 4, p = .7, r = .5:
(1,2) 182.45 196.74 193.27
(2,3) 180.34 194.68 191.93
(3,4) 185.74 194.52 193.22
(4,5) 190.59 207.02 203.51

NOTE.—Simulation parameter values were , 2a = 5 j =
, and .1 v = v = v = v = v = .011 2 3 4 5

a NP = nonparametric regression; P1 = parametric re-
gression with the leave-one-out technique; P2 = parametric
regression without the leave-one-out technique (i.e., stan-
dard parametric regression). Results in parentheses denote
the percentages of correct identification of the true interval
location.

Table 2

Comparison of Nonparametric and Parametric
Regressions, Based on Average Prediction Error
(Residual Sums of Squares Averaged Over 1,000
Replications), for a Single QTL, with 100 Sib Pairs

CANDIDATE INTERVAL ERROR IN PREDICTIONa

NP
(95.2%)

P1
(97.0%)

P2
(97.8%)

b = 0, p = .5, r = .8:
(1,2) 104.72 98.44 95.61
(2,3) 92.83 78.69 74.25
(3,4) 106.29 101.54 99.02
(4,5) 122.18 114.84 110.49

NP
(88.4%)

P1
(80.6%)

P2
(82.9%)

b = 1, p = .9, r = .7:
(1,2) 162.26 167.05 165.11
(2,3) 147.75 154.68 151.83
(3,4) 164.90 168.32 165.17
(4,5) 179.44 188.69 184.72

NP
(71.5%)

P1
(40.4%)

P2
(43.7%)

b = 2, p = .7, r = .5:
(1,2) 196.65 211.76 203.38
(2,3) 188.07 200.55 197.63
(3,4) 199.19 213.01 206.05
(4,5) 212.92 225.47 218.86

NOTE.—Simulation parameter values were , 2a = 3 j =
, and .1 v = v = v = v = v = .011 2 3 4 5

a Definitions of abbreviations and results in parentheses
are the same as those given in table 1.

interval with more-dense markers, to arrive at a finer
localization of the QTL. To simulate this practice, we
consider data on multiple markers that are more densely
located within the coarse interval identified at the pre-
vious stage. In our simulations, we generated data on a
set of M ordered markers. We used the following no-
tations:

1. The recombination fractions between the trait locus
and the nearest flanking markers 2 and 3, are v2 and v3,
respectively.

2. The recombination fraction between markers 1 and
2 is v1.

3. The recombination fraction between markers 3 and
4 is v4.

4. The recombination fraction between markers 4 and
5 is v5.

We have used simulation parameter values of ;M = 5
; ; ; , 2, and 4;2a = 5 j = 1 v = v = v = v = v = .01 b = 01 2 3 4 5

and different parameter values of p and r, such that the
proportion of variance in the trait explained by the QTL
varied between 85%–95 %. For each set of parameter
values, we have performed 1,000 iterations. The results
are given in table 1. In all the cases, the five markers
were found to be linked to the trait locus at the 1%
level of significance. Thus, we have four candidate in-
tervals (i.e., those flanked by markers 1 and 2, 2 and 3,
3 and 4, and 4 and 5) in which the trait locus may be
located.

When (i.e., there is no dominance effect),b = 0
equation (1) holds. Thus, it is expected that the para-
metric approach will be more efficient. We find that,
in almost all replications, both of the methods cor-
rectly identify the interval in which the QTL is lo-
cated. Although the parametric regression has a
smaller error in prediction, the error in the nonpar-
ametric regression is not much larger. The error in
prediction is lowest for the parametric regression
without use of the leave-one-out technique (P2). As
mentioned earlier, this is not unexpected, since, with-
out use of the leave-one-out technique, there is ob-
vious overfitting of the regression model to the data.
Since we have, therefore, recommended and used the
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Table 3

Comparison of Nonparametric and Parametric
Regressions, Based onAverage Prediction Error (Residual
Sums of Squares Averaged over 1,000 Replications) for
Different Allele Frequencies of the QTL, for a Single
QTL, with 100 Sib Pairs

CANDIDATE INTERVAL ERROR IN PREDICTIONa

NP
(90.7%)

P1
(82.5%)

P2
(84.1%)

p = .9:
(1,2) 152.76 157.63 155.35
(2,3) 143.37 148.54 146.72
(3,4) 152.90 160.81 157.64
(4,5) 166.29 173.06 171.18

NP
(92.7%)

P1
(85.3%)

P2
(87.8%)

p = .7:
(1,2) 146.52 153.67 150.29
(2,3) 135.44 143.48 140.03
(3,4) 150.41 155.13 152.45
(4,5) 166.22 176.52 171.38

NP
(94.5%)

P1
(87.0%)

P2
(89.7%)

p = .5:
(1,2) 139.80 146.26 142.97
(2,3) 123.04 137.51 131.58
(3,4) 141.36 150.75 144.84
(4,5) 157.59 168.22 164.17

NOTE.—Simulation parameter values were ,a = 5 b =
, , and .22 j = 1 v = v = v = v = v = .011 2 3 4 5

a Definitions of abbreviations and results in parentheses
are the same as those given in table 1.

Table 4

Comparison of Nonparametric and Parametric
Regressions, Based on Average Prediction Error
(Residual Sums of Squares Averaged over 1,000
Replications), for a Single QTL, With 50 Sib Pairs

CANDIDATE INTERVAL ERROR IN PREDICTIONa

NP
(95.3%)

P1
(97.6%)

P2
(98.0%)

b = 0, p = .5, r = .8:
(1,2) 111.45 107.56 104.87
(2,3) 103.40 100.48 97.84
(3,4) 112.83 109.58 105.53
(4,5) 122.17 118.97 116.04

NP
(84.7%)

P1
(80.2%)

P2
(81.3%)

b = 2, p = .9, r = .7:
(1,2) 167.93 170.56 168.01
(2,3) 160.26 165.02 161.36
(3,4) 169.88 172.64 169.90
(4,5) 184.71 191.39 188.55

NP
(70.7%)

P1
(38.8%)

P2
(40.7%)

b = 4, p = .7, r = .5:
(1,2) 212.68 216.44 214.85
(2,3) 207.79 215.75 210.26
(3,4) 210.92 214.50 213.13
(4,5) 221.36 229.23 226.39

NOTE.—Simulation parameter values were , 2a = 5 j =
, and .1 v = v = v = v = v = .011 2 3 4 5

a Definitions of abbreviations and results in parentheses
are the same as those given in table 1.

leave-one-out technique, the apropriate comparison
of prediction errors with the proposed nonparametric
approach and the parametric approach should be be-
tween columns NP and P1. (P2 is presented for com-
pleteness, since the leave-one-out technique may not
be used in practice—even though it should be used to
avoid false inferences from model overfits.) When

or 4, equation (1) does not hold. In the presenceb = 2
of dominance, whereas the nonparametric approach
identifies the correct interval in 91% of the cases when

, the parametric approach does so in onlyb = 2
83%–84% of the cases. The nonparametric approach
has a smaller error in prediction. When (i.e.,b = 4
when there is a high-dominance effect), the perform-
ance of the parametric approach is very poor com-
pared with that of the nonparametric approach. Al-
though with use of parametric regression the per-
centage of correct identification of the interval is only
43%–51%, the percentage obtained with use of the
nonparametric regression is 76%. Under this scenario,
the average prediction error is also much higher for
the parametric-regression method, compared with the
nonparametric-regression method. Thus, we find that,

while the nonparametric approach performs almost
as efficiently as does the parametric approach when
there is no dominance effect, it performs increasingly
better than does the parametric approach, as the dom-
inance effect increases.

We have also investigated the effect of changing the
values of the parameters a and b. In table 2, we present
results similar to those seen in table 1 but with a = 3
and , 1, and 2. Qualitatively, the inferences areb = 0
similar to those derived from table 1; in the absence of
dominance, the parametric regression performs better
than does the nonparametric regression, but the converse
is true in the presence of dominance. We find that, in
table 2, the percentages of correct identification are
lower and the prediction errors are higher than those in
table 1. This is because the proportion of trait variance
explained by the QTL is a function of a and b in addition
to other parameters; this proportion decreases with re-
duction in a for fixed values of b and other parameters.
In other words, there is a decrease in the efficiencies of
performance, both for nonparametric and parametric
procedures, as the proportion of trait variance explained
by the QTL decreases.

We have likewise investigated the effect of changes in
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Figure 4 Mean rank correlation, based on 1,000 replications, between squared difference of trait values of a sib pair and estimated i.b.d.
scores at 100 ordered markers (all of which were unlinked to the QTL), with the use of simulation parameter values , , ,2a = 5 j = 1 p = .7 r =

, and (a) , (b) , and (c) , on the basis of data from 100 sib pairs..6 b = 0 b = 2 b = 4

trait-allele frequencies, for fixed values of a, b, and other
parameters. The results are presented in table 3. We find
that, as p deviates from .5 (for fixed values of the other
parameters), the percentage of correct identification of
the interval decreases and the error in prediction in-
creases both for nonparametric- and parametric-regres-
sion methods. As was explained in the preceding para-
graph, this is not unexpected, because, for fixed values
of the other parameters, the proportion of trait variance
explained by the QTL decreases as p deviates from .5.
With dominance, the nonparametric method performs
better than does the parametric method, for all values
of the trait-allele frequency.

Assessment of Type I Error

To determine the efficacy of a statistical procedure, it
is imperative that the type I error rate be assessed. In
the present context, the probability of type I error is the
probability of rejection of the null hypothesis of no link-
age between the QTL and any of the markers considered,
when, actually, the QTL is unlinked to the markers. To
assess this, we generated the trait values from the un-
derlying distribution, the details of which have been pro-
vided in the Model section above. The sib-pair i.b.d.
scores at the various marker loci were generated from
a trinomial distribution, independent of the trait i.b.d.
scores. This ensured that the QTL was unlinked to any

of the markers considered. Such data were generated for
100 sib pairs for each replication; 1,000 replications
were performed.

These data were then analyzed with use of the rank-
correlation statistic, as is prescribed for the first stage of
the proposed two-stage procedure. For the set of 100
ordered markers, the values of the rank correlation, av-
eraged over 1,000 replications, are graphically presented
in figure 4. The mean rank-correlation values were all
small and were statistically nonsignificant. This inference
holds at all levels of dominance at the trait locus. Thus,
the empirical estimate of the type I error probability is
zero. In practice, a fine-mapping protocol is undertaken
only when some “probable” intervals are identified, at
the first stage, on the basis of statistically significant val-
ues of the rank correlation. However, in the present case,
there was no need for further investigation, since the
null hypothesis was accepted for all the markers con-
sidered.

Effect of Sample Size

To assess the effect of reduction of the sample size on
the proposed procedure, we simulated the required data
on samples of 50 and 25 sib pairs with varying domi-
nance effect on the trait. The nature of the absolute rank
correlations between the trait value and the estimated
i.b.d. scores at the 100 generated markers is presented
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Figure 5 Mean rank correlation, based on 1, 000 replications, between squared difference of trait values of a sib pair and estimated i.b.d.
scores at 100 ordered markers, with the use of simulation parameter values , , , , and (a) , (b) , and (c) ,2a = 5 j = 1 p = .7 r = .6 b = 0 b = 2 b = 4
on the basis of data from 50 sib pairs.

in figures 5a–c and 6a–c, for sample sizes of 50 and 25
sib pairs, respectively. Compared with the rank corre-
lations based on 100 sib pairs [see fig. 1a–c], these rank
correlations, in general, decrease with a decrease in the
sample size. However, the peak at the 24th marker is
prominent, even with the use of 25 sib pairs. Thus, the
approximate position of the trait locus is indicated cor-
rectly even for small sample sizes. The effect of domi-
nance on the rank correlations is identical to that seen
for 100 sib pairs, as discussed in the Finer Localization
of the QTL section.

We repeated the nonparametric regression with the
use of samples of 50 and 25 sib pairs, using the same
set of parameter values and five markers that we had
previously used. The results are presented in tables 4
and 5, respectively. We found that the percentage of
correct identification of flanking markers decreases with
a decrease in sample size, for both the parametric- and
the nonparametric-regression procedures. The rate of de-
crease is greater when the dominance effect is high (i.e.,

). As was observed with the use of 100 sib pairs,b = 4
we found that, with the use of smaller sample sizes, while
the performance of the nonparametric-regression ap-
proach is similar to that of the parametric-regression
approach when there is no dominance effect, the per-
formance of the nonparametric-regression procedure is
significantly better when the degree of dominance in the

trait is high. Furthermore, the nonparametric method
performs increasingly better with decreasing sample size,
in the presence of dominance effects.

Effect of Deviation from Normality

Nonparametric statistical procedures are usually less
sensitive to minor deviations in distributional assump-
tions. Both the linear-regression procedure (Olson
1995b) and the nonparametric-regression procedure
proposed here are expected to be robust with respect to
the underlying trait distribution of the sib pairs. We note
that the test procedure used in Olson’s method (1995b)
is based on distributional assumptions. Thus, it is of
considerable interest to assess the performance of both
of the procedures when there is deviation from the as-
sumed trait distribution. One of the existing methods of
evaluating the effect of deviation is to introduce local
perturbations in the original distribution. In our previ-
ous simulation examples, we had generated the trait val-
ues of the sib pairs from a bivariate normal distribution.
To assess the effect of the trait distribution deviating
from normal on the identification of the location of the
interval of the QTL, we perturbed the relevant bivariate
normal distributions with an exponential distribution
with a mean of 1. To preserve the original mean vector
and dispersion matrix of ’s (i.e., , ,2(y , y ) a = 5 j = 1i1 i2
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Figure 6 Mean rank correlation, based on 1,000 replications, between squared difference of trait values of a sib pair and estimated i.b.d.
scores at 100 ordered markers, with the use of simulation parameter values , , , , and (a) , (b) , and (c) ,2a = 5 j = 1 p = .7 r = .6 b = 0 b = 2 b = 4
on the basis of data from 25 sib pairs.

, and , 2, 4), suitable shifts in location werer = .7 b = 0
made. We have considered two different perturbations
with different intensities. In the first case, we considered
a mixture of 80% of the original bivariate normal dis-
tribution and 20% of the exponential distribution with
a mean of 1. In the second case, the mixture comprised
50% of each of the distributions mentioned above. With
the other parameters (i.e., recombination fractions) re-
maining the same, we performed both the nonparametric
and parametric regressions to identify the most-likely
position of the QTL. The results with regard to the per-
centages of correct identification of flanking interval are
given in table 6. When these percentages are compared
with those presented in table 1, we find that perturbation
added to the normal distribution has a very marginal
effect on the ability to correctly identify the QTL-interval
location, even when the amount of perturbation is as
high as 50%. As was seen in the previous cases, although
the nonparametric-regression procedure performs al-
most as well as does the parametric-regression procedure
when there is no dominance, it performs increasingly
more efficiently as the dominance effect increases.

Detection of Multiple QTLs

When the trait is controlled by multiple loci, the pro-
posed procedure for detection of a QTL with the use of
flanking markers can be easily extended. Suppose that

the quantitative trait is determined by two biallelic trait
loci ( ) and ( ). Let the marginal expectations ofA, a B, b
trait values for individuals with genotypes AA, Aa, and
aa be a1, b1, and �a1, respectively, and let those for
individuals with genotypes BB, Bb, and bb be a2, b2,
and �a2, respectively. We assume the conditional ex-
pectation of the trait, given that the genotypes at the
two QTLs are additive. Thus, for example, the expected
trait value for an individual with the genotype AABB is

; for an individual with the genotype Aabb, it isa � a1 2

; etc. For ease of exposition and simulation, web � a1 2

assume that the unlinked QTLs are actually on different
chromosomes. Furthermore, the QTL are separately as-
sumed to be in linkage equilibrium with a pair of flank-
ing markers. On the basis of the data on trait values of
n independent sib pairs and the estimated i.b.d. scores
of two sets of ordered markers on two different chro-
mosomes, our aim is to detect both of the QTLs by
means of identification of the closest pair of flanking
markers on each chromosome. Using the rank-correla-
tion statistic, we can identify the possible pairs of can-
didate flanking markers on each chromosome and then
can invoke either the parametric- or the nonparametric-
regression procedure, to select the most-likely intervals
where the two QTL are located.

We have performed simulations to assess the perform-
ance of the rank-correlation statistic when there are two
QTLs and to compare the performance of the paramet-
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Table 5

Comparison of Nonparametric and Parametric
Regressions, Based on Average Prediction Error
(Residual Sums of Squares Averaged over 1,000
Replications), for a Single QTL, with 25 Sib Pairs

CANDIDATE INTERVAL ERROR IN PREDICTIONa

NP
(93.1%)

P1
(95.4%)

P2
(96.2%)

b = 0, p = .5, r = .8:
(1,2) 126.04 122.76 119.64
(2,3) 118.48 115.57 112.05
(3,4) 128.16 121.35 120.03
(4,5) 143.74 137.43 134.68

NP
(82.6%)

P1
(75.3%)

P2
(77.0%)

b = 2, p = .9, r = .7:
(1,2) 171.28 176.55 174.16
(2,3) 164.09 171.63 167.32
(3,4) 173.37 178.80 175.09
(4,5) 188.48 198.06 195.45

NP
(65.5%)

P1
(34.2%)

P2
(35.9%)

b = 4, p = .7, r = .5:
(1,2) 229.53 240.08 237.62
(2,3) 220.49 238.16 233.44
(3,4) 226.86 237.61 233.38
(4,5) 243.35 258.77 255.26

NOTE.— Simulation parameter values were , 2a = 5 j =
, and .1 v = v = v = v = v = .011 2 3 4 5

a Definitions of abbreviations and results in parentheses
are the same as those given in table 1.

Table 6

Comparison of Nonparametric and Parametric Regressions, for a
Single QTL, When the Trait Distribution Is Perturbed with
Exponential Distribution

PERCENTAGE (%) OF CORRECT

IDENTIFICATION OF TRUE

INTERVAL LOCATION ATa

DEGREE OF

DOMINANCE

(b)

20% Perturbation 50% Perturbation

NP P1 P2 NP P1 P2

0 .5 95.1 98.3 98.9 94.8 98.1 98.6
2 .9 91.2 81.7 83.2 88.0 81.3 84.0
4 .7 73.6 48.5 50.6 71.7 46.4 48.8

NOTE.—Simulation parameter values were , , and2a = 5 j = 1 v =1

, .v = v = v = v = .01 r = .72 3 4 5
a Definitions of abbreviations are the same as those given in table

1.

ric- and the nonparametric-regression procedures with
regard to correctly locating the flanking intervals. To
study the nature of rank correlations, we have generated
data on 100 sib pairs, as described previously. We con-
sidered 100 ordered markers on each of the two chro-
mosomes, with the recombination fraction between suc-
cessive markers equal to .05. The first QTL is assumed
to be located between the 24th and 25th markers on the
first chromosome, and the second QTL is assumed to
be located between the 60th and 61st markers on the
second chromosome. Two sets of trait parameter values
were chosen for generation of simulated data. In both
sets, a1 was chosen to be 5, and the other parameters
were chosen such that, in the first case, there was no
dominance at either QTL and the first QTL explained
the trait variance of 80%, whereas, in the second case,
there was a dominance effect only at the first QTL, and
it explained the trait variance of 60%. The nature of the
rank correlations is presented in figure 7a–d. Although
the magnitudes of the rank correlations are, in general,
less than those seen in the case of a single QTL, we find
that, in both cases, peaks are prominent at the 24th
marker on the first chromosome and at the 60th marker
on the second chromosome, thus correctly identifying
the approximate positions of the QTLs.

To compare the parametric- and nonparametric-re-
gression strategies in the case of two QTLs, we have
generated data on five markers on each of the two chro-
mosomes. The two sets of simulation trait parameter
values were chosen as mentioned in the preceding par-
agraph. The percentages of correct identification of
flanking markers on each chromosome are given in table
7. We find that, in the first case, where there is no dom-
inance effect at either QTL, the percentage of correct
identification of both QTLs is, as expected, slightly
higher in the parametric procedure. However, the per-
centage of correct identification of both QTLs by means
of the nonparametric procedure is as high as 93.2%,
and, for all practical purposes, it is almost as efficient
as the parametric procedure. In the second case, where
there is dominance at the major QTL, the percentage of
the correct identification of both of the QTLs is sub-
stantially higher (88.2%) with use of the nonparametric
procedure. While the parametric procedure locates the
second QTL (which has no dominance effect) in ∼90%
of the simulation replications, the first QTL is correctly
located in only 61%–73% of the replications. The cor-
responding figures for the nonparametric procedure are
92% and 87.5%, respectively. Thus, we find that the
nonparametric procedure performs more efficiently, even
when there is dominance in one of the two QTLs. We
note that, in our simulations, whenever the flanking in-
terval has been incorrectly identified, the QTL has been
identified in an adjacent interval. Thus, the error in iden-
tification may not be of any major practical consequence.
We also note that, for given values of the proportions
of trait variance explained by the QTLs, there may be
several possible combinations of trait parameter values
(a’s, b’s, and p’s). An obvious question is whether the
performance of the procedures differs for such different
combinations of trait parameter values that correspond
to the same proportions of trait variance explained by
the QTLs. We have investigated this problem and have
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Table 7

Comparison of Nonparametric and Parametric Regressions,
for Two QTLs, in the Absence of Epistasis and with 100 Sib
Pairs

TYPE OF IDENTIFICATION

(FIRST QTL/SECOND QTL)

PERCENTAGEa OF

NP P1 P2

No dominance effect at either QTLb:
Correct/correct 93.2 96.5 97.4
Correct/incorrect 6.8 3.5 2.6
Incorrect/correct 0 0 0
Incorrect/incorrect 0 0 0

Dominance effect at the first QTLc:
Correct/correct 82.2 65.7 69.6
Correct/incorrect 5.3 3.0 3.4
Incorrect/correct 9.8 23.6 21.8
Incorrect/incorrect 2.5 6.7 5.2

NOTE.—Simulation parameter values were , ,2a = 5 j = 1
and , and there were 1,000 repli-v = v = v = v = v = .011 2 3 4 5

cations.
a Definitions of abbreviations are the same as those given

in table 1.
b Trait variance of 80% was explained by the first QTL.
c Trait variance of 60% was explained by the first QTL.

Figure 7 Mean rank correlation, based on 1,000 replications, between squared difference of trait values of a sib pair and estimated i.b.d.
scores at 100 ordered markers. Panels a and b pertain to the first and second loci, respectively, when the first locus, without dominance, explains
80% of the variation in trait values; panels c and d pertain to the first and second loci, respectively, when the first locus, with dominance,
explains 60% of the variation in trait values.

found that different trait parameter values that conform
to the same proportion of variance explained by the
major QTL yield almost identical results, in terms of
percentage of correct identification of the location of the
interval.

We have previously ignored the possibility of epistatic
interactions between the two QTLs. Epistatic interac-
tions can be parametrized in a multitude of ways (Kear-
sey and Pooni 1996). However, to perform some prelim-
inary investigations of the effect of epistatic interactions
on the performance of the proposed method, we have
considered a specific model of epistasis. This model is
prompted by experimental observations in nonhuman
organisms, and it has been denoted as the “digenic in-
teraction model” (Kearsey and Pooni 1996). Under this
model, the expectations of the trait value remain the
same as before, for individuals who are not double ho-
mozygotes. For individuals who are double homozy-
gotes, the expectations are as follows: E(YFAABB) =

, ,a � a � D E(YFAAbb) = a � a � D E(YFaaBB) =1 2 1 2

, and . (The�a � a � D E(YFaabb) = �a � a � D1 2 1 2

symbol D is variable for the different double homozy-
gotes, to keep the marginal expectations unaltered.)

Under this digenic interaction model, simulated data
were generated as described previously. The results of
the first stage of our procedure are graphically depicted
in figure 8a–d, with , , and other sets of pa-D = 1 a = 51

rameter values chosen such that the first locus without
any dominance effect explained 80% [fig. 8a and b] and
such that the first locus with dominance effect explained
60% [fig. 8c and d] of the total variation in Y. It was
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Table 8

Comparison of Nonparametric and Parametric Regressions,
for Two QTLs, in the Presence of Epistasis and with 100
Sib Pairs

TYPE OF IDENTIFICATION

(FIRST QTL/SECOND QTL)

PERCENTAGEa OF

NP P1 P2

No dominance effect at either QTLb:
Correct/correct 91.4 94.5 95.6
Correct/incorrect 8.6 5.5 4.4
Incorrect/correct 0 0 0
Incorrect/Incorrect 0 0 0

Dominance effect at the first QTLc:
Correct/correct 78.1 60.8 64.8
Correct/incorrect 6.5 3.3 4.9
Incorrect/correct 12.3 26.4 23.0
Incorrect/incorrect 3.1 9.5 7.3

NOTE.—Simulation parameter values were , ,2a = 5 j = 1
, and , and there were 1,000D = 1 v = v = v = v = v = .011 2 3 4 5

replications.
a Definitions of abbreviations are the same as those given

in table 1.
b Trait variance of 80% was explained by the first QTL.
c Trait variance of 60% was explained by the first QTL.

Figure 8 Mean rank correlation, based on 1,000 replications, between squared difference of trait values of a sib pair and estimated i.b.d.
scores at 100 ordered markers. Panels a and b pertain to the first and second loci, respectively, when the first locus, without dominance but
with epistatic interaction with the second locus, explains 80% of the variation in trait values; panels c and d pertain to the first and second
loci, respectively, when the first locus, with dominance and with epistatic interaction with the second locus, explains 60% of the variation in
trait values.

observed that, in the presence of epistatic interaction,
the magnitudes of the rank correlations are slightly lower
than they are in the absence of epistatic interaction. The
peaks are pronounced at the right locations of the QTLs.
The results of the second stage of the proposed proce-
dure are provided in table 8, and they show that the
qualitative inferences are identical to those developed in
the absence of epistasis; however, the percentages of cor-
rect identification of the interval are marginally lower.
Thus, it is clear that the proposed procedure performs
well at both stages, even in the presence of reasonable
levels of epistatic interaction between the QTLs.

Discussion

Recent developments in molecular genetics have resulted
in the increasing use of genomewide scans for mapping
of traits. Genomewide scans yield huge data sets that
require analyses with the use of efficient and robust sta-
tistical methods. In this paper, we have proposed a semi-
parametric strategy for QTL-interval mapping. Given
the trait values of the sib pairs and the estimated i.b.d.
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scores of a set of ordered markers on a chromosome,
we have developed a two-stage multipoint linkage
method. We first reduce the data on markers, to include
only those markers that provide indications of linkage
(coarse mapping) to the QTL, using rank correlation.
Then, we fine map the QTL. The two-stage approach
was prompted by cost-benefit considerations of geno-
typic-data generation and statistical analyses. Although
the adoption of a set of high-density markers in ge-
nomewide scans may provide maximal information, it
is often prohibitively expensive. A statistically and log-
ically more sound—as well as cost-effective—strategy is
to initially use low-density markers (at, perhaps, 5–10-
cM intervals) and to identify a set of probable marker
intervals in which the QTL(s) may be located. Then, one
can saturate these “probable intervals” with higher-den-
sity markers (i.e., those at 1–5-cM intervals) and can
localize the QTL(s) to finer intervals. In fact, such a
strategy has recently been adopted in a sib-pair linkage
study of schizophrenia (Williams et al. 1999). The in-
vestigators performed a two-stage genomewide scan. In
the first stage, the average density of the markers used
was 17.26 cM. In the second stage, the intervals iden-
tified in stage 1 were saturated with markers with an
average density of 5–10 cM. The proposed protocol uses
a computationally easy, low-stringency, statistical cri-
terion based on rank correlation, for analysis of low-
density-marker data on sib pairs. For analysis of high-
density-marker data—that is, for fine mapping—we have
proposed a method that is capable of identifying even
small “signals” of linkage evidence, because it does not
use assumed functional forms for the nature of depen-
dence between squared difference of sib-pair trait values
and estimated i.b.d. scores. In fact, in the presence of
dominance effects at the trait loci, which may be the rule
rather than the exception, functional forms are difficult
to derive algebraically. Furthermore, since local smooth-
ing is performed, the efficiency of detecting evidence of
linkage in small marker intervals is higher, and variations
in values of trait parameters keeping the proportion of
trait variance are explained by the QTL(s) at the same
level. We have compared the proposed procedure with
a currently used parametric-regression procedure (Olson
1995b) and have shown that the efficiency of our pro-
cedure in correctly identifying the interval locations in-
creases with an increase in the degree of dominance at
the trait locus. Moreover, with the use of the proposed
procedure, the percentage of correct identification of
flanking markers is not significantly adversely affected
with reasonable reductions in sample sizes. We have also
shown that the procedure is robust with respect to dis-
tributional assumptions.

We emphasize that, if one wishes to perform a one-
step genome scan, the data can be analyzed with the
use of either the proposed procedure based on rank

correlation (which is computationally cheap) or non-
parametric regression (which is computationally more
expensive). A major advantage of the proposed proce-
dure is that, unlike parametric-linkage methods, it does
not involve modeling of epistasis and other trait param-
eters and, hence, is much more robust with respect to
distributional assumptions.
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